“Augmenting Organizational Decision-​Making with Deep Learning Algorithms: Principles, Promises, and Challenges”

The article titled “Augmenting Organizational Decision-​Making with Deep Learning Algorithms: Principles, Promises, and Challenges” by Yash Raj Shrestha, Vaibhav Krishna and Georg von Krogh has been accepted for publication in the Journal of Business Research.

ABSTRACT
The current expansion of theory and research on artificial intelligence in management and organization studies has revitalized the theory and research on decision-​making in organizations. In particular, recent advances in deep learning (DL) algorithms promise benefits for decisionmaking within organizations, such as assisting employees with information processing, thereby augment their analytical capabilities and perhaps help their transition to more creative work. We conceptualize the decision-​making process in organizations augmented with DL algorithm outcomes (such as predictions or robust patterns from unstructured data) as deep learning– augmented decision-​making (DLADM). We contribute to the understanding and application of DL for decision-​making in organizations by (a) providing an accessible tutorial on DL algorithms and (b) illustrating DLADM with two case studies drawing on image recognition and sentiment analysis tasks performed on datasets from Zalando, a European e-​commerce firm, and Rotten Tomatoes, a review aggregation website for movies, respectively. Finally, promises and challenges of DLADM as well as recommendations for managers in attending to these challenges are also discussed.

Pre-print available: Here

Related Posts

Begin typing your search term above and press enter to search. Press ESC to cancel.

Back To Top